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Thermomechanical analysis (TMA) is one of the important characterization techniques in 
the field of thermal analysis.  With TMA, the dimensional properties of a sample are 
measured as the sample is heated, cooled or held under isothermal conditions.  The 
loading or force applied to the sample can be varied with TMA.  The technique is used to 
assess the following important properties of polymers: 
 

• Softening temperatures or Tg(s) 
• Melting temperatures 
• Stress relief effects at Tg 
• Coefficients of thermal expansion (CTE) 
• Dimensional compatibilities of two or more different materials 
• Onset of foaming 
• Relative degree of cure of thermosets 
• Composite delamination temperatures 
• Percent shrinkages of films and fibers 
• Shrinkage forces 
• Effectiveness of cling of films 
• Testing of coatings on metals, films, optical fibers and electrical wires 
• Assessment of transverse versus machine orientational properties of films 

 
 
With the TMA technique, a number of different probe configurations are offered in order 
to optimize the test conditions for a specific sample and/or application.   The TMA 
probes offered by Perkin-Elmer include expansion, penetration, compression, flexure, 
extension and dilatometry.  Some of the probe geometries are represented in Figure 1. 
 
 
 
 
 
 
 
 
 
 



Figure 1.  TMA probe configurations 
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The most commonly used TMA probe is the expansion probe.  This probe rests on the 
surface of the test specimen under low loading conditions.  As the sample expands, 
during heating, the probe is pushed up and the resulting expansion of the sample is 
measured.  Displayed in Figure 2 are the TMA results obtained on an epoxy – fiberglass 
printed circuit board sample at the glass transition temperature (Tg) using the expansion 
probe. 
 

Figure 2.  Measurement of Tg of epoxy printed circuit board 
 

Tg = 121 C 

 
 
 
 
TMA 
Displacement 
 
 
 
Expansion 
 
 
      30    Temperature  (°C)       200 



At the glass transition event, the epoxy matrix exhibits a significant change in slope due 
to an increase in its rate of expansion.  The onset temperature of this change in expansion 
behavior is the Tg of the resin.  TMA is significantly more sensitive than DSC for the 
measurement of Tg of crosslinked or filled materials, such as composites.   
 
One of the benefits of using the expansion probe is that coefficients of thermal expansion 
(CTE) can be easily measured by TMA.  The CTE is a quantitative assessment of the 
expansion of a material over a temperature interval.  When manufacturing products that 
contain two different materials, it is oftentimes critical to ensure that the materials will 
have CTE values that are identical to avoid the build-up of thermal stresses or to prevent 
leaks or component malfunctions.  Displayed in Figure 3 are the CTE values measured on 
an epoxy printed circuit board below and above Tg.   
 

Figure 3.   TMA results on epoxy PCB showing assessment of coefficients of thermal 
expansion 

 

 
 
Below Tg, the printed circuit board has a CTE value of 50.5 µm/m°C, while above Tg, 
the value of the CTE increases to 270.7 µm/m°C.  For electronic materials, it is important 
that the other associated components have similar expansion coefficients to prevent the 
build-up of thermal stresses during operation.  For example, better product lifetimes of 
electronic flip-chip packaging can be obtained on solder joints by ensuring that the CTE 
values of the solder and the epoxy underfill are identical.   
 
Figure 3 also shows the effects of residual thermal stresses on the TMA measurements.  
During the 1st heating segment, the TMA expansion results show the occurrence of an 



undulation in its expansion behavior in the region near Tg.  This reflects the release of 
stresses, which are frozen-in during processing.  When the printed circuit board sample is 
cooled, and then reheated, a simple change in expansion rate is observed at Tg which 
indicates that the material is now free of thermal stresses or other thermal history related 
effects.   
 
The high sensitivity of the TMA technique allows it to detect weak transitions that may 
not be observed by DSC.  An example is the characterization of brake linings, which are 
highly filled and crosslinked.  The TMA expansion results displayed in Figure 4 
demonstrates that the TMA can detect the glass transition temperature associated with 
these highly filled materials. 
 

Figure 4.  TMA expansion results on brake linings 
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The TMA penetration probe provides another means of assessing glass transition 
temperatures.  When performing measurements with the penetration probe, loading is 
added to the probe so that it moves down through the material as it softens.  The 
penetration probe is useful for measuring the glass transitions of coatings on a substrate.  
Displayed in Figure 5 are the TMA penetration results generated on a wire sample with 
two coatings.  The wire is used to produce electrical motor coils and the inner coating 
prevents  electrical contact between adjacent wires and the outer coating is used to bond 
the coil.     
 
 



Figure 5.  TMA penetration probe results on electrical coil wire 
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Figure 6.  TMA penetration results on crosslinked and
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In the next applications example, a sample of foam blown polyethylene was characterized 
using the compression mode of the TMA.  The results are displayed in Figure 7. 
 

Figure 7.  Characterization of LDPE foam by TMA compression mode 
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For the characterization of films and fibers, the TMA extension mode 
results.   With the extension mode of analysis, the sample is clampe
fixtures which then hangs in the TMA sample tube.  Displayed in Figure
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Figure 8.  TMA extension results on polyester partially oriented fibers 
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Figure 9.  TMA results on biaxially oriented HDPE film in machine and transverse 
orientations 
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In the transverse direction, the film sample expands slightly up to 133 C, where rapid 
shrinkage or contraction occurs due to the frozen-in orientation which has been imposed 
on the film in that orientation.  At about 138 C, the film undergoes elongation due to the 
melting of the crystalline phase since the film is no longer able to support any load.  In 
the machine direction, the film undergoes gradual expansion until sample melting occurs 
at 134 C, producing rapid elongation.  The TMA results demonstrate that the biaxially 
oriented film exhibits distinctly different shrinkage/elongation characteristics depending 
on how the sample is cut and mounted in the TMA.  There is apparently a high degree of 
orientation in the transverse direction as compared to the machine direction, due to the 
particular processing conditions employed in the production of the film.   
 
The Perkin Elmer TMA 7 provides state-of-the-art performance for the characterization 
of the dimensional properties of materials.  The instrument offers the following key 
features to provide the best possible TMA results: 
 

• High resolution (3 nanometer) strain detector for the measurement of even the 
smallest or most subtle dimensional changes 

• Electromagnetic probe control (rather than less performing springs) which 
provides constant, load force regardless of sample dimensional changes 

• Computer-controlled loading (or force application) which eliminates the use 
of weights, improving reproducibility of results 



• Temperature-controlled detector (LVDT) for the elimination of baseline 
variability and better accuracy and reproducibility 

• Automated cooling capability using ACA (automated cooling accessory) for 
ease of use and improved subambient performance 

• Wide temperature range (-170 to 1000 C) using a single furnace eliminating 
the need for time consuming furnace changes 

• Multiple probe types (including expansion, penetration, compression, flexure, 
extension and dilatometry) to permit the successful analyses of a wide range 
of samples and applications 

• One-touch automated probe control for simplifying probe positioning and to 
provide the highest possible reproducibility of TMA results 

 
 
 
Summary 
 
TMA provides valuable characterization information on the dimensional properties of a 
wide range of materials.  Used either alone or in conjunction with other thermal analysis 
techniques (DSC, TGA, DMA or thermoconductivity), the technique provides a large 
amount of valuable information on polymers and other materials which is difficult or 
even impossible to obtain by other analytical techniques.  TMA offers a higher degree of 
sensitivity as compared to DSC for the detection of the Tg of highly filled or highly 
crosslinked materials, such as composites, printed circuit boards or brake linings.   The 
state-of-the-art Perkin Elmer TMA 7 provides outstanding results on a wide variety of 
materials and applications for both research as well as quality assurance uses.  
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