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Background 
 
     The constitutive theory of hyperelasticity (Rivlin, 1948) is often employed to 
represent the stress-strain response behavior of incompressible, isotropic rubber-like 
solids. The theory relates the three-dimensional Cauchy (true) stress tensor T to the 
derivatives of the Helmholtz free-energy (strain energy) density function Ψ  by: 
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where: I is the identity tensor; B is the left Cauchy-Green deformation tensor 
characterized by the three invariants 
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and p is a Lagrange multiplier which arises due to the material incompressibility 
constraint .  13 =I
 
      Herein we use the terms Helmholtz free-energy density and strain energy density 
interchangeably. Strictly speaking, the terms Helmholtz free-energy density and strain 
energy density are used for non-isothermal and isothermal processes, respectively.  
 
     For homogeneous deformations, eqn (1) can be expressed in principal component 
form by imposition of the relations 0132312 === TTT and 333222111 ,, TtTtTt === : 
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A simple extension is defined by stretch ratios: 132 /1 λλλ == . If we assert that no 
stresses are applied in the 2 and 3 directions, then 032 == tt , and eqn (3) for and 

becomes an equation for the unknown Lagrange multiplier p: 
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When this result is inserted in eqn (3) for t1, the result is 
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This equation gives the stress-strain relation in tension in terms of two properties of the 
material, and . In the present case, the three invariants are given by 

and
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Experimental Evaluation of the Helmholtz Free-energy (Strain Energy) Density 
FunctionΨ 
 
     In order to determine the form of ),( 21 IIΨ from experimental data, it is necessary to 
make measurements of stress-strain relations under different types of strain field. Obata 
et. al. (1970) discovered in their attempts to construct 121 /),( III ∂∂Ψ and 

surfaces for natural rubber vulcanizates that the whole region of the 
domain for homogeneous deformations under the assumptions of material 

incompressibility can be mapped out from a region of stretch ratios 

221 /),( III ∂∂Ψ
),( 21 II

21,λλ satisfying the 
condition 12 λλ ≤ and  (Fig. 1). Because of this interrelationship between the 
invariants and for simple types of strain, Treloar (1975, p. 218) cautions against the 
use of experimental data from any one particular type of strain field, e.g. simple 
extension or pure shear for deriving the true form of

2/1
12 /1 λλ ≥

1I 2I

),( 21 IIΨ . It can be seen in Fig. 2 any 
such simple strain only traces out a single line on the free-energy surface and does not 
provide sufficient information for constructing the surface. 
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Figure 1. Domains of (I1 , I2) (λ1 ,λ2) under the condition of incompressibility (adopted from Obata, 
Kawabata, and Kawai (1970)) 

 
 

 
 
Figure 2. Map of the Helmholtz free-energy (strain energy) function Ψ(I1, I2): (a) relation between 
I1 and I2 for incompressible material behavior; and (b) representation of the free-energy function 

as a function of I1 I2 (adopted from Morman (1985)). 
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