

2013 Regional Conference

Testing of Elastomers and Plastics in Support of Analysis

Kurt Miller, Axel Products, Inc. www.axelproducts.com

Physical Testing Services

Home | Testing Services | Training Courses | Technical Downloads | About Axel | Contact Axel

Testing Services

- Elastomer (hyperelastic) Characterization
 - Simple Tension
 - Pure Shear
 - Equal Biaxial Extension
 - Volumetric Compression (Bulk Modulus)
 - Simple Compression
 - Elastomer Specimen Preparation
- Plastic Characterization
 - Tensile Test
 - Tensile Test with Transverse Strain Measurement
 - Loading and Unloading Experiments
 - Short Term Creep Experiment
 - Shear Test
 - Plastic Film Experiment
 - Compression
 - Plastic Specimen Preparation
- Sponge Elastomer Characterization
 - Compression Test
 - Simple Shear Test
 - Tensile Test with Lateral Strain Measurement
- Vibration and Viscoelastic Experiments
 - Viscoelastic Decay
 - Dynamic Vibration

High Strain Rate Experiments

- High Strain Rate Tensile Test
- High Strain Rate Compression Test
- High Strain Rate Bend Test
- · High Strain Rate Shear Test
- Medical Material Testing in Saline
 - Testing in Saline Solution
 - Testing Materials at Low Forces
- Friction Testing
 - Sled Style Friction Experiment
 - High Pressure Friction Experiment
- Fabric Characterization
 - · Fabric Tensile Test with Imaging
 - Fabric Specimen Preparation
- Wire Testing
- Component Tests
 - Relaxation and Thermal Recovery
 Sequence
 - Bushing and Mount Characterization
 - Load Deflection Tests
 - Axial + Torsional Testing

axelproducts.com

Rubber Bands

© 2013 ANSYS, Inc.

June 3, 2013

ANSYS Confidential

Compression

Rubber

- 1. High strain applications
- 2. No distinct modulus or yield
- 3. Bulk >>> Shear

Compression

A Spring and a Dashpot?

What does Incompressible Mean?

Volumetric Compression

Poisson's ratio approaching 0.5 means infinite bulk modulus, K

For elastomer materials Poisson's ratio is difficult or impossible to measure accurately. For plastic materials, it is hard to measure VC accurately. Measure Pressure-Volume directly, compute K (or D₁ in ABAQUS)

K/G Relationship to Poisson's Ratio

Incompressibility

Not a spring and dashpot

Confinement can be Significant

Hyperelastic Models

- Material response is isotropic, isothermal, and elastic and is assumed fully or nearly incompressible.
- There are many hyperelastic models available in ANSYS which can cover wide varieties of elastomers used in Industries.

Available Hyperelastic models:

- Arruda-Boyce Hyperelastic Material
- Blatz-Ko Foam Hyperelastic Material
- **Extended Tube Material**
- **Gent Hyperelastic Material**
- Mooney-Rivlin Hyperelastic Material
- Neo-Hookean Hyperelastic Material
- Ogden Compressible Foam Hyperelastic Material
- Ogden Hyperelastic Material
- Polynomial Form Hyperelastic Material
- Response Function Hyperelastic Material
- Yeoh Hyperelastic Material

Specialized Hyperelastic models:

- Anisotropic Hyperelastic Material
- Bergstrom-Boyce Material
- Mullins effect
- User-Defined Hyperelastic Material

Hyperelastic Models Define a Surface

NSYS, Inc. June 3, 2013 ANSYS Confidential

Rubber

Hyperelastic Models

Curve Fitting feature

- Material curve fitting allows you to derive coefficients from experimental data that you provide for your material.
- With this capability, you compare experimental data versus program-calculated data for different nonlinear models and determine the best material model to use.
- ANSYS provides curve-fitting, based on experimental data, for all of the available hyperelastic models. Any of the hyperelasticity models in ANSYS can be used.

Simple Tension

- Uniaxial loading
- Free of lateral constraint

Gage Section: Length:Width >10:1

Planar Tension

- 1. Uniaxial loading
- 2. Perfect lateral constraint
- 3. All thinning occurs in one direction

Equal Biaxial Extension

ANSYS Confidential

Why?

- Same Strain State as Compression
- 2. Can Not Do Pure Compression
- 3. Can Do Pure Biaxial

Some common Elastomers exhibit dramatic strain amplitude and cycling effects at moderate strain levels

Conclusions:

- Test to Realistic Strain Levels
- **Use Application** 2. Specific Loadings to Generate Material Data
- Need to load and unload to separate elastic from plastic

Some common Elastomers exhibit dramatic strain amplitude and cycling effects at moderate strain levels

Conclusions:

- 1. Test to Realistic S Levels
- 2. Use Application
 Specific Loading
 Generate Materia
- 3. Need to load and to separate elastic plastic

Some common Elastomers exhibit dramatic strain amplitude and cycling effects at moderate strain levels

Conclusions:

- Test to Realistic Strain Levels
- 2. Use Application Specific Loadings to Generate Material Data
- Need to load and unload 3. to separate elastic from plastic

21

June 3, 2013

Some common elastomers exhibit dramatic strain amplitude and cycling effects at moderate strain levels

Conclusions:

- 1. Pick one level
- 2. Use Mullins Model
- 3. Use FeFp
- 4. Use large strain hysteresis model

Thermoplastic Elastomers

Increasingly used to replace elastomers

Rubber inside of plastic

Plasticity and Flow

Conclusions:

- 1. Pick one level
- 2. Use Mullins Model
- 3. Use Viscoelastic
- 4. Use large strain hysteresis model

Thermoplastic Elastomers

Teflon

Conclusions:

- 1. Pick one level
- 2. Use FeFp

A General Strategy

- 1. Understand the loading conditions of the part
- 2. Understand the general behavior of the materials involved
- 3. Select the significant material behaviors
- 4. Use existing or develop material models to describe the behavior
- 5. Verify the performance of the material model

ANSYS Confidential

June 3, 2013

Bergstrom-Boyce Model

The Bergstrom-Boyce material model is a phenomenological-based, highly nonlinear material model used to model typical elastomers and biological materials.

It allows for a nonlinear stress-strain relationship, creep, and rate-dependence.

It assumes an inelastic response only for shear distortional behavior. The response for volumetric is still purely elastic

The model is based on a spring (A) in parallel with a spring and damper (B) in series.

All components (springs and damper) are highly nonlinear.

... Bergstrom-Boyce Model

The stress state in A can be found in the tensor form of the deformation gradient tensor ($F = dx_i / dX_i$) and material parameters, as follows:

ANSYS Confidential

$$\sigma_{A} = \frac{1}{J_{A}} \frac{\mu_{A}}{3} \frac{L^{-1} \left(\overline{\lambda}_{A}^{*} \lambda_{A}^{lock}\right)}{\overline{\lambda}_{A}^{*} \lambda_{A}^{lock}} \text{dev} \left[\widetilde{B}_{A}^{*}\right] + K \left[J_{A} - 1\right] \widetilde{I}$$
 where
$$\sigma_{A} = \text{stress state in A}$$

$$\mu_{A} = \text{initial shear modulus of A}$$

$$\lambda_{A}^{lock} = \text{limiting chain stretch of A}$$

$$K = \text{bulk modulus}$$

$$K = \text{bulk modulus}$$

$$G_{A} = \text{det}[F]$$

$$\widetilde{B}_{A}^{*} = \frac{J^{-2/3}\widetilde{F}\widetilde{F}^{T}}{\overline{\lambda}_{A}^{*}} = \frac{J^{-2/3}\widetilde{F}\widetilde{F}^{T}}{\sqrt{tr}[\widetilde{B}^{*}]/3}$$

Crushable Foam

Large strain hysteresis model

ANSYS Thermal Effects

- 1. Cold and Hot
- 2. Thermal Conductivity
- 3. Thermal Expansion

© 2013 ANSYS, Inc.

Cold and Hot

Typical T_G diagrams for polymer materials

ANSYS old and Hot

Elastomers Properties Can Change by Orders of Magnitude in the Application Temperature Range.

Cold and Hot

Testing at the Application Temperature

- 1. Measure Strain at the Right Location
- 2. Perform Realistic Loadings

Model Verification

Attributes of a good model verification experiment

The geometry is realistic.

All relevant constraints are measurable.

The analytical model is well understood

© 2013 ANSYS, Inc. June 3, 2013 **ANSYS Confidential**

Confinement can be Significant

© 2013 ANSYS, Inc.

June 3, 2013

ANSYS Confidential

Model Verification

Model Verification

A General Strategy

- 1. Understand the loading conditions of the part
- 2. Understand the general behavior of the materials involved
- 3. Select the significant material behaviors
- 4. Use existing or develop material models to describe the behavior
- 5. Verify the performance of the material model

June 3, 2013 ANSYS Confidential

Experimental Elastomers Training at Axel

Products

ANSYS teams with Axel Product, Inc. (www.axelproducts.com) to offer this course that covers material testing, material modeling and finite element analysis of elastomers.

Workshop 6 – Axisymmetric Ring

Goal

- Run a viscoelastic analysis of an axisymmetric hyperelastic ring.
- · Become familiar with performing viscoelastic curve-fitting.

Model Description

- 2D plane axisymmetric model
- · Frictional contact between the rings
- Frictional contact between the bottom ring and side walls

@ 2011 ANSYS Inc.