

Measuring Material Properties to Build Material Models in FEA

Kurt Miller www.axelproducts.com

Who is Axel Products, Inc.

Physical Testing Services for Engineering and Analysis

The testing images and data sets were created in the Axel Products laboratory. The testing methods discussed are available as a service to analysts around the world.

For additional information, visit us at: www.axelproducts.com

Physical Testing Services for Engineering and Analysis

Axel Products, Inc. 2255 S.Industrial Ann Arbor MI 48104 USA

P: +1-734-994-8308 F: +1-734-994-8309

Directions and Map

About Axel

e-mail us

Training

Technical Information

- 1. "Compression or Biaxial Extension?" (PDF: 304 KB / 3 pages).
- 2. "Measuring the Dynamic Properties of Elastomers for Analysis": (PDF: 834 KB / 7 pages).
- 3. "Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis": (PDF: 775 KB / 8 pages).

more...

Testing Services

Hyperelastic Properties of Elastomers

Experiments: Data for:
Simple Tension Ogden
Pure Shear Mooney-Rivlin
Equal Biaxial Arruda-Boyce
Compression & Volumetric Damage Models
Viscoelastic Decay

Experiments: Data for:

Modulus Poisson's Ratio

A Strategy for Material Model Development

- □ Understand the Loading Conditions of the Part
- Understand the General Behavior of the Materials Involved
- Select the Material Behaviors Significant to the Simulation Effort
- Use Existing or Develop Material Models to Describe the Behavior
- □ Verify the Performance of the Material Model

Understanding the General Behavior of the Materials Involved

- ☐ Static Behavior
 - **Plastics**
 - Elastomers
- ☐ Temperature
- Dynamic Loadings
 - Rate
 - Noise and Vibration
- ☐ Fatigue and Aging

Load Frame

Note: Stress and strain are total quantities.

- TEFLON1

Comparison of Metal Response to that of Rubber

Crystalline Solid Small elastic strain (.2%) Plastic yielding Tension / Comp. Similar

Rubber

Large Elastic Strains (600%) Complex Damage Tension / Comp very different Viscoelastic, Hysteresis

Simple Models

Meaningful Parameters: Young's Modulus, E Poisson's Ratio, v

Elastomer Behavior, Typical Stress-Strain Response

Load, unload cycles show hysteresis and damage Progressive loads shows progressive damage

Non-physical Parameters:

(i.e., non-measurable) coefficients of nonlinear functions of strain—Must be automatically calibrated (i.e., curve fit) from test data.

Strain States

Pure States of Strain or Stress

- □ Simple Tension
- □ Pure Shear
- □ Simple Compression, Biaxial Extension
- Bulk Compression

What is Simple Tension?

Uniaxial Loading

Free of Lateral

aint

Gage Section: Length:Width >10:1

Measure Strain only in the Region where a Uniform State of Strain Exists

No Contact

Initial Loading
Typical of Data from
Existing Standards

Mutiple Loadings

Softening

Permanent Strain Effects

Loading to Larger Strain Levels

Additional Softening

Additional Permanent Damage

Some Common Elastomers Exhibit Dramatic Strain Amplitude and Cycling Effects at Moderate Strain Levels

Conclusions:

Test to Realistic Strain Levels

Use Application Specific Loadings to Generate Material Data

Compression Testing in the Lab

Requirements:

Uniaxial Loading

No Lateral Constraint

Compression Testing in the Lab

It is Experimentally Difficult to Minimize Lateral Constraint due to Friction at the Specimen Loading Platen Interface

Friction Effects Alter the Stressstrain Curves

The Friction is Not Known and Cannot be Accurately Corrected

Even Very Small Friction Levels have a Significant Effect at Very Small Strains

Compression Testing in the Lab

Friction Effects on Compression Data

An Analytical Analysis of the Effect of Specimen-Platen Friction in the Compression Experiment

Analysis by Jim Day, GM Powertrain

Why?

Same Strain State as Compression

Can Not Do Pure Compression

Can Do Pure Biaxial

Analysis of the Specimen Justifies Geometry

Biaxial Extension
Curves have the same
General Shape as
Simple Tension
Allows for Matched
Loading Conditions

Some Common Elastomers Exhibit Dramatic Strain Amplitude and Cycling Effects at Moderate Strain Levels

Volumetric Compression Testing

Direct Measure of the Stress Required to Change the Volume of an Elastomer

Requires Resolute
Displacement Measurement
at the Fixture

Volumetric Compression Testing

Initial Slope = Bulk Modulus

Typically, only highly constrained applications require an accurameasure of the entire Pressure Volume relationship.

What is Planar Tension?

Uniaxial Loading
Perfect Lateral Constraint
All Thinning Occurs in One
Direction

Strain Measurement is
Particularly Critical
Some Material Flows
from the Grips
The Effective Height is
Smaller than Starting
Height so >10:1
Width:Height is
Needed

Similar Stress-strain Shape to Simple Tension and Biaxial Extension Match Loadings between Strain States

A Small but Significant amount of Material will Flow From the Planar Tension Grips.

Data Reduction in the Lab

Testing the Correct Material

Testing the Correct Material

Consistent within The Experimental Data Set Cut All Specimens from the Same Slab

Testing the Correct Material

Verify that The Tested Material is the Same as the Part

Processing Color Cure History ...

Testing at Non-ambient Temperatures

Testing at the Application Temperature

Measure Strain at the Right Location Perform Realistic Loadings

Testing at Non-ambient Temperatures

Elastomers Properties Can Change by Orders of Magnitude in the Application Temperature Range.

Measuring Thermal Constants

- ☐ Thermal Conductivity
- ☐ Thermal Diffusivity
- ☐ Specific Heat

Thermal Effects

Thermal Effects

Viscoelastic Behavior – Testing

Viscoelastic Behavior

Can be Assumed to Reasonably Follow Linear Viscoelastic Behavior in Many Cases

Is not the same as aging!

Describes the short term reversible behavior of elastomers.

Tensile, shear and biax have similar viscoelastic properties!

Viscoelastic Behavior – Testing

A totally "relaxed" Stress-strain
Curve can Be Constructed
Decades of data in time are equally
valuable for fitting purposes.

Dynamic Behavior - Testing

Types of Dynamic
Behavior
Large strains at high
velocity
Small sinusoidal strains
superimposed on large
mean strains

Dynamic Behavior - Testing

Mean Strain and Amplitude Effects are Significant

Low Speed Testing

No inertia effect

Long Wave Length vs Measurement

Dynamic Modulus = Peak Stress/ Peak Strain Storage Modulus = $E*cos\delta$ Loss Modulus = $E*sin\delta$

High Speed Dynamics

Wave Propagation

Inertial effect is Significant

Wave Length is Small

100 - 10,000 Hz.

Wave Propagation

$$E^* = \rho c^2$$

Measure:

Density ρ
Wave Speed *c*Wave Decay

 $c = f\lambda$ c speed of longitudinal wave f excitation frequency λ wave length E* Dynamic Modulus

Wave Propagation

Dynamic Vibrations

Dynamic Vibrations

Fatigue Crack Growth

Provides Great Potential. Not well understood.

Fatigue Crack Growth

Model Verification Experiments

Attributes of a Good Model Verification Experiment

The geometry is realistic.

All Relevant Constraints are Measurable.

The Analytical Model is Well Understood

Model Verification Experiments

The Contribution of the Flashing on the Part was Unexpected, Initially Not Modeled, But Very Significant to the Actual Load Deflection

Thermal Aging

