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Overview of Issues Governing Fatigue Failure 

• Geometry 
– Component characteristic dimensions 
– Stress-concentrating features 
– Strain-displacement and stress-load 

relationship(s) 

• Duty Cycle 
– Static pre-load 
– Dynamic load (constant amplitude) 
– Loading spectrum (variable amplitude) 
– Cracks open or closed? 
– Stress vs. strain control 

• Material 
– Stress-strain and strength properties 
– Crack growth properties 
– Strain crystallization 
– Initial damage state 
– Self-heating 
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Purpose 

• Characterize the material in a way that  

– Indicates likely fatigue performance in actual 
service.   

– Reveals performance sensitivities to design 
options and governing parameters.   

– Shows bounds of available operating space.   

– Feeds simulation-based damage analysis  

– Empowers well-founded material dev. decisions 
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Fatigue Measurement Challenges 

• Duration  
– Tests consume time on expensive equipment.   
– Upper limit on time budget is often much less than full service life 
– Test acceleration opportunity limited by self-heating 

• Productivity  
– Observing a representative range of operating conditions 
– Acquiring a sufficient record of damage development for analysis 
– Minimizing number of specimens consumed 

• Repeatability 
– Intrinsic variations in initial damage state amplified by strong sensitivity to 

damage state and to applied load 
– Observation limits in both space (smallest observable crack growth) and time 

(time limit) 

• Risk 
– Measurement paradigm / uncontrolled modes (sideways crack growth) 
– Wasted time or specimen  
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Approach 

• Fracture mechanics experiments to 
characterize fundamental behavior governing 
crack development 

• Numerical simulation to estimate and visualize 
consequences of measured behaviors 
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Test Inventory 

• Fully-relaxing behavior 
– Static Tearing Procedure 

– 2 Hour Fatigue Crack Growth Procedure 

– 24 hour Fatigue Crack Growth Procedure 

– Crack nucleation Procedure 

– Flaw size Calculation 

– Strain-life curve Calculation 

• Non-relaxing behavior 
– Crack Arrest Procedure 

– Haigh diagram Calculation 
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Test Specimens 

Courtesy Axel Products 

Fracture Mechanics Tests Nucleation Tests 

Planar Tension (Pure Shear) Simple Tension 

h 
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Hardware 

Environmental 
chamber 

Edge-cracked 
specimen 

CCD camera 

Load cell 

Servo-hydraulic 
actuator 
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Scheme for Fully Relaxing FCG 
Experiments 
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Expected Crack Growth 
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Crack Growth Characteristic 

2 hour procedure 
24 hour procedure 
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Crack Nucleation Tests 
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By combining a fracture mechanics test with a nucleation-style test, strain-life 
curves over a wide range of operating conditions can be constructed.   

Inferred flaw size 
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Crack Retardation Under Nonrelaxing 
Conditions 
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Typical Crack Arrest Observations 
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Fit of Strain-Crystallization Law to 
Arrest Data 
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Crystallization Function 
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Directly shows the effect of nonrelaxing cycles on the 
powerlaw slope of the fatigue law 
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Computing the Design Envelope 

Fully Relaxing FCG 
Test (24 hours) 

Fully Relaxing FCG 
Test (2 hours) 

Tear Strength Test Static Strength  

Fatigue Crack 
Nucleation Tests 
(strain-life curve) 

Crack Arrest under 
nonrelaxing 
conditions 
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Typical Design Envelope (ie Haigh Diagram) 
 

The Haigh diagram shows, for a given fatigue life, the 
envelope of allowable combinations of mean strain 
and strain amplitude.   

NR 

Simple 
tension / 
compression 
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What use is the design envelope? 
 

The Haigh diagram shows, for a given 
fatigue life, the envelope of allowable 
combinations of mean strain and strain 
amplitude.   

NR 

Simple 
tension / 
compression 

Conventional 
Lab test 

In-Service 
Event 

Its very common that duty cycle contains 
few large events and many small events?  
Which actually are most significant to 
durability? 
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Conclusions 

• The design envelope  
– comprehensive perspective  
– necessary basis for evaluation of service condition effects 

• Experimental and computational procedures have been 
developed to identify 
– Rubber’s fatigue design envelope 
– Parameters needed for damage simulation 

• Procedures are optimized to provide maximum information 
and minimum risk for a given test time budget 

• Useful for better-informed selection of materials for 
complex service environments, and simulation of 
components under complex duty cycles 
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Additional / Future Directions 

• Self-heating 
– Materials characterization:  

• Hysteresis 

• Temperature effects on fatigue 

– Theory for estimating effects of complex dynamic 
strain cycles:   
• multiaxial 

• variable amplitude 

– Simulation for estimating self-heating in rubber 
components 
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Abstract 

•   
• For many applications, endurance under cyclic loading is an important and 

challenging design requirement.  Ensuring adequate endurance requires 
knowledge of the limits of the material in the space of likely operating 
conditions, ie a design envelope.  Although defining the design envelope 
for a given material can be laborious, it can also be rewarding, and there 
are at least a few published examples of such curves that have been 
developed for certain rubbers (the Haigh and Cadwell diagrams are 
examples).  We have devised an efficient approach for characterizing 
rubber’s fatigue design envelope.  It is based on measurements of the 
fatigue crack growth rate law under both relaxing and nonrelaxing 
conditions.  The measurement procedures are executed using the pure 
shear specimen, and they employ novel strain-ramping techniques that 
increase test reliability.  After measuring the material’s fatigue rate laws, 
we then numerically integrate them to produce a contour map showing 
how the fatigue life depends on duty cycle parameters such as strain 
amplitude, mean strain, and minimum strain.   
 


