

Experiments for Characterizing the Fatigue Behavior of an Elastomer

1. Basic Hyperelastic Properties

Purpose: determine the basic properties for the development of a Hyperelastic material model

Typical Testing Conditions: Specimen: simple tension, planar tension (pure shear) and equal biaxial Peak strain levels: 0.10, 0.20, 0.30, 0.40, 0.5 (for example) Rate: 0.01 s-1

Output: Raw Data File: Engineering Strain, Engineering Stress, Segment Number, Time

2. Volumetric Compression

Purpose: determine the confined (bulk) stiffness of the elastomer to additionally define the hyperelastic material model.

Typical Testing Conditions: Specimen: Disk cut from sheet

Output:

Raw Data File: Hydrostatic Strain, Hydrostatic Pressure, Segment Number, Time Summary File: Bulk Modulus

3. Elastic, Work and Hysteretic Behavior

Purpose: determine the relations between strain, stress, stored and dissipated energy. These relations provide the basis for FE Analyses to determine the history of loading, for estimating crack driving forces, and for estimating self-heating effects.

Typical Testing Conditions: Specimen: planar tension (pure shear) Preconditioning: 10 cycles at 1.1 x upcoming strain level Peak strain levels: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 (for example) Frequency: 10 Hz (for example) Measurement duration: 3000 cycles or steady state temperature, whichever occurs first

Output:

Raw Data File: Engineering Strain, Engineering Stress, Cycles at current strain level, Time (s), Surface Temperature

Summary File: Cycles at current strain level, Maximum Strain, Minimum Strain, Maximum Stress (Mpa), Minimum Stress (Mpa), Loading Energy (N-mm), Unloading Energy (N-mm), Hysteretic Energy (N-mm), Surface Temperature

4. Tear Strength

Purpose: determine the ultimate capacity of the material to support a static load. The strength provides an upper bound useful in planning fatigue experiments. The critical tearing energy may be determined from this experiment

Typical Testing Conditions: Specimen: planar tension (pure shear) Strain rates: 0.01 s-1

Output:

Raw Data File: Raw Data File: Engineering Strain, Engineering Stress, Segment Number, Time

5. Fatigue Crack Growth Under Fully Relaxing Conditions

Purpose: determine the rate of crack growth as a function of crack driving force, under conditions where the load is fully removed during each cycle.

Typical Testing Conditions: Specimen: planar tension (pure shear) Frequency: 10 Hz (for example) Test duration: 20 hours

Output:

Summary File: Peak Strain, Peak stress, specific work during loading, specific work recovered on unloading, hysteresis, energy release rate, crack growth

6. Fatigue Crack Growth Under Non-Relaxing Conditions

Purpose: determine the effect of nonrelaxing cycles on the rate of crack growth. When these results are combined with results from fully relaxing conditions, it becomes possible to estimate fatigue performance over a wide range of conditions.

Typical Testing Conditions: Specimen: planar tension (pure shear) Frequency: 10 Hz (for example) Test duration: 20 hours

Output:

Summary File: Peak Strain, Peak stress, specific work during loading, specific work recovered on unloading, hysteresis, energy release rate, crack growth

7. Creep Crack Growth

Purpose: determine the rate of crack growth under a near constant strain condition. The specimen is subject to a very lowly increasing strain.

Typical Testing Conditions: Specimen: planar tension (pure shear) Ramp: from 0.03 to 0.50 Test duration: 20 hours

Output: Summary File: Time, Strain, Stress, crack width

8. Flaw Size and Crack Nucleation

Purpose: determine the fatigue crack nucleation life at a benchmark operating condition, and the associated naturally occurring flaw size. Once the flaw size has been determined, crack growth rate measurement results can be used to efficiently estimate fatigue crack nucleation life over a wide range of conditions.

Typical Test Conditions: Specimen: simple tension Peak Strain: 100%, 200% strain (on gauge section) Min Strain: 0% (based on original gauge length) Frequency: 10 Hz, cycle until break

Output: Raw Data File: cycles to failure for each experiment.

9. Cutting Resistance

Purpose: determine the resistance of rubber to cutting under pre-strain.

Typical Testing Conditions: Specimen: planar tension (pure shear) Pre-strain Levels: 5%, 10%, 15% (for example)

Output: Summary File: Strain, Cutting Resistance Force

10. Tensile Test to Failure

Purpose: determine the rubber failure in uniaxial tension

Typical Testing Conditions: Specimen: simple tension (ASTM D412 Die D)

Output: Summary File: Strain, Stress, Time

General Pricing for Characterizing the Fatigue Behavior of an Elastomer

Prices are shown in US Dollars	Lab Temp. (23C)	-40C to 150C
1. Basic Hyperelastic Properties (3 tension tests, 3 pure shear tests, 3 equal biaxial tests, all at 0.01 s-1)	1155	1710
2. Volumetric Compression (3 tests)	250	375
3. Elastic, Work and Hysteretic Behavior (<i>3 tests</i>)	1700	2550
4. Tear Strength (3 tests)	315	450
5. Fatigue Crack Growth Under Fully Relaxing Conditions (3 tests, each less than 20 hour duration) (3 tests, each incremental 24 hour period)	1015 900	1015 900
6. Fatigue Crack Growth Under Non-Relaxing Conditions (3 tests, each less than 20 hour duration) (3 tests, each incremental 24 hour period)	1015 900	1015 900
7. Creep Crack Growth (3 tests, each less than 20 hour duration)	1015	1015
8. Flaw Size and Crack Nucleation (6 tests, 3 at each of 2 max strain levels)	1200	1200
9. Cutting Resistance (3 tests, each less than 20 hour duration)	1260	tbd
10. Uniaxial Tensile Test to Failure (<i>3 tests)</i>	210	315

May 2016. Pricing subject to change.

Notes:

These are typical durability and crack growth tests. Feel free to request a proposal for other interests or specifications.

The data is delivered via e-mail in an ASCII format.

Customer data and materials will be retained for 1 year after initial data delivery.

Purchase Order, VISA, MasterCard, AMEX, and Discover Card are accepted methods of payment. Terms: NET 30 Days after Delivery of Data